3D Bioplotter Research Papers

Displaying all papers by J. R. de Wijn (12 results)

Tailorable Surface Morphology of 3D Scaffolds by Combining Additive Manufacturing with Thermally Induced Phase Separation

Macromolecular Rapid Communications 2017 Volume 38, Article 1700186

The functionalization of biomaterials substrates used for cell culture is gearing towards an increasing control over cell activity. Although a number of biomaterials have been successfully modified by different strategies to display tailored physical and chemical surface properties, it is still challenging to step from 2D substrates to 3D scaffolds with instructive surface properties for cell culture and tissue regeneration. In this study, additive manufacturing and thermally induced phase separation are combined to create 3D scaffolds with tunable surface morphology from polymer gels. Surface features vary depending on the gel concentration, the exchanging temperature, and the nonsolvent used. When preosteoblasts…

The effect of scaffold-cell entrapment capacity and physico-chemical properties on cartilage regeneration

Biomaterials 2013 Volume 34, Issue 17, Pages 4259–4265

An important tenet in designing scaffolds for regenerative medicine consists in mimicking the dynamic mechanical properties of the tissues to be replaced to facilitate patient rehabilitation and restore daily activities. In addition, it is important to determine the contribution of the forming tissue to the mechanical properties of the scaffold during culture to optimize the pore network architecture. Depending on the biomaterial and scaffold fabrication technology, matching the scaffolds mechanical properties to articular cartilage can compromise the porosity, which hampers tissue formation. Here, we show that scaffolds with controlled and interconnected pore volume and matching articular cartilage dynamic mechanical properties,…

The effect of scaffold architecture on properties of direct 3D fiber deposition of porous Ti6Al4V for orthopedic implants

Journal of Biomedical Materials Research Part A 2010 Volume 92A, Issue 1, pages 33-42

3D porous Ti6Al4V scaffolds were directly fabricated by a rapid prototyping technology, 3D fiber deposition (3DF). In this study, scaffolds with different structures were fabricated by changing fiber spacing and fiber orientation. The influence of different architectures on mechanical properties and permeability of the scaffold were investigated. Mechanical analysis revealed that compressive strength and E-modulus increase with decreasing the porosity. Permeability measurements showed that not only the total porosity but also the porous structure can influence the permeability. 3DF was found to provide good control and reproducibility of the desired degree of porosity and the 3D structure. Results of this…

Three-Dimensional Fiber Deposition of Cell-Laden, Viable, Patterned Constructs for Bone Tissue Printing

Tissue Engineering Part A 2008 Volume: 14 Issue 1, Pages 127-133

Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow stromal cells (BMSCs). Here we characterize the applicability of 3D fiber deposition with a plotting device, Bioplotter, for the fabrication of spatially organized, cell-laden hydrogel constructs. The viability of printed BMSCs was studied in time, in several hydrogels, and extruded from different needle diameters. Our findings indicate that cells survive…

3D Fiber-Deposited Electrospun Integrated Scaffolds Enhance Cartilage Tissue Formation

Advanced Functional Materials 2008 Volume 18, Issue 1, Pages 53-60

Despite the periodical and completely interconnected pore network that characterizes rapid prototyped scaffolds, cell seeding efficiency remains still a critical factor for optimal tissue regeneration. This can be mainly attributed to the current resolution limits in pore size. We present here novel three-dimensional (3D) scaffolds fabricated by combining 3D fiber deposition (3DF) and electrospinning (ESP). Scaffolds consisted of integrated 3DF periodical macrofiber and random ESP microfiber networks (3DFESP). The 3DF scaffold provides structural integrity and mechanical properties, while the ESP network works as a “sieving” and cell entrapment system and offers?at the same time?cues at the extracellular matrix (ECM) scale.…

Biological performance in goats of a porous titanium alloy-biphasic calcium phosphate composite

Biomaterials 2007 Volume 28, Issue 29, Pages 4209-4218

In this study, porous 3D fiber deposition titanium (3DFT) and 3DFT combined with porous biphasic calcium phosphate ceramic (3DFT+BCP) implants, both bare and 1 week cultured with autologous bone marrow stromal cells (BMSCs), were implanted intramuscularly and orthotopically in 10 goats. To assess the dynamics of bone formation over time, fluorochrome markers were administered at 3, 6 and 9 weeks and the animals were sacrificed at 12 weeks after implantation. New bone in the implants was investigated by histology and histomorphometry of non-decalcified sections. Intramuscularly, no bone formation was found in any of the 3DFT implants, while a very limited…

Bone ingrowth in porous titanium implants produced by 3D fiber deposition

Biomaterials 2007 Volume 28, Issue 18, Pages 2810-2820

3D fiber deposition is a technique that allows the development of metallic scaffolds with accurately controlled pore size, porosity and interconnecting pore size, which in turn permits a more precise investigation of the effect of structural properties on the in vivo behavior of biomaterials. This study analyzed the in vivo performance of titanium alloy scaffolds fabricated using 3D fiber deposition. The titanium alloy scaffolds with different structural properties, such as pore size, porosity and interconnecting pore size were implanted on the decorticated transverse processes of the posterior lumbar spine of 10 goats. Prior to implantation, implant structure and permeability were…

Anatomical 3D fiber – deposited scaffolds for tissue engineering: designing a neotrachea

Tissue Engineering 2007 Volume: 13 Issue 10, Pages 2483-2493

The advantage of using anatomically shaped scaffolds as compared to modeled designs was investigated and assessed in terms of cartilage formation in an artificial tracheal construct. Scaffolds were rapid prototyped with a technique named three-dimensional fiber deposition (3DF). Anatomical scaffolds were fabricated from a patient-derived computerized tomography dataset, and compared to cylindrical and toroidal tubular scaffolds. Lewis rat tracheal chondrocytes were seeded on 3DF scaffolds and cultured for 21 days. The 3-(4,5-dimethylthiazol-2yl)-2,5-dyphenyltetrazolium bromide (MTT) and sulfated glycosaminoglycan (GAG) assays were performed to measure the relative number of cells and the extracellular matrix (ECM) formed. After 3 weeks of culture, the…

Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: Preparation and in vitro experiment

Biomaterials 2006 Volume 27, Issue 8, Pages 1223-1235

Three-dimensional (3D) fiber deposition (3DF), a rapid prototyping technology, was successfully directly applied to produce novel 3D porous Ti6Al4V scaffolds with fully interconnected porous networks and highly controllable porosity and pore size. A key feature of this technology is the 3D computer-controlled fiber depositing of Ti6Al4V slurry at room temperature to produce a scaffold, consisting of layers of directionally aligned Ti6Al4V fibers. In this study, the Ti6Al4V slurry was developed for the 3D fiber depositing process, and the parameters of 3D fiber depositing were optimized. The experimental results show how the parameters influence the structure of porous scaffold. The potential…

Dynamic mechanical properties of 3D fiber-deposited PEOT/PBT scaffolds: An experimental and numerical analysis

Journal of Biomedical Materials Research Part A 2006 Volume 78A, Issue 3, pages 605-614

Mechanical properties of three-dimensional (3D) scaffolds can be appropriately modulated through novel fabrication techniques like 3D fiber deposition (3DF), by varying scaffold’s pore size and shape. Dynamic stiffness, in particular, can be considered as an important property to optimize the scaffold structure for its ultimate in vivo application to regenerate a natural tissue. Experimental data from dynamic mechanical analysis (DMA) reveal a dependence of the dynamic stiffness of the scaffold on the intrinsic mechanical and physicochemical properties of the material used, and on the overall porosity and architecture of the construct. The aim of this study was to assess the…

Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness

Biomaterials 2006 Volume 27, Issue 35, Pages 5918-5926

Hollow fibers find useful applications in different disciplines like fluid transport and purification, optical guidance, and composite reinforcement. In tissue engineering, they can be used to direct tissue in-growth or to serve as drug delivery depots. The fabrication techniques currently available, however, do not allow to simultaneously organize them into three-dimensional (3D) matrices, thus adding further functionality to approach more complicated or hierarchical structures. We report here the development of a novel technology to fabricate hollow fibers with controllable hollow cavity diameter and shell thickness. By exploiting viscous encapsulation, a rheological phenomenon often undesired in molten polymeric blends flowing through…

3D fiber-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties

Biomaterials 2006 Volume 27, Issue 7, Pages 974-985

One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds.…